

 NOAA Observations

 v0.4.56

 Table of contents

 	Modules

 	NOAA.Observations

 	NOAA.Observations.CLI

 	NOAA.Observations.Help

 	NOAA.Observations.Log

 	NOAA.Observations.Message

 	NOAA.Observations.State

 	NOAA.Observations.Station

 	NOAA.Observations.URLTemplates

NOAA.Observations

Fetches weather observations for a US state/territory code.

 Summary

 Functions

 fetch(code)

 Fetches weather observations for a US state/territory code.

 Functions

 Link to this function

 fetch(code)

 View Source

 @spec fetch(NOAA.Observations.State.code()) ::
 {:ok, [NOAA.Observations.Station.observation()]} | {:error, String.t()}

Fetches weather observations for a US state/territory code.
Returns either tuple {:ok, [observation]} or tuple {:error, text}.

 Examples

iex> alias NOAA.Observations
iex> {:ok, observations} = Observations.fetch("vt")
iex> Enum.all?(observations, &is_map/1) and length(observations) > 0
true

NOAA.Observations.CLI

Parses the command line and prints a table of weather observations
from the NOAA Weather Service.
Exercise in the book Programming Elixir by Dave Thomas.

 Summary

 Functions

 main(argv)

 Parses the command line and prints a table of weather observations
from the NOAA Weather Service.

 Functions

 Link to this function

 main(argv)

 View Source

 @spec main(OptionParser.argv()) :: :ok

Parses the command line and prints a table of weather observations
from the NOAA Weather Service.
argv can be "-h" or "--help", which prints info on the command's
usage and syntax. Otherwise it is a US state/territory code
(case-insensitive) and optionally the number of observations
to format (the first n ones).
To format the last n observations, specify switch --last.
To ring the bell, specify switch --bell.
To choose a table style, specify switch --table-style.

 Parameters

	argv - command line arguments (list)

 Switches

	-h or --help - for help
	-b or --bell - to ring the bell
	-l or --last - to format the last n observations
	-t or --table-style - to choose a table style

 Table styles

	bare - no colors
	barish - like bare but colored
	cyan - cyan background
	cyan-alt - cyan header, alternating row colors
	cyan-border - light cyan border
	cyan-mult - cyan header, 3 repeating row colors
	dark - dark colors
	dark-alt - dark colors, alternating row colors
	dark-mult - dark colors, 3 repeating row colors
	dashed - no colors
	dotted - slightly colored
	dotted-alt - slightly colored, alternating row colors
	dotted-mult - slightly colored, 3 repeating row colors
	game - game board
	green - green background
	green-alt - green header, alternating row colors
	green-border - light green border
	green-border-padded - light green border with extra padding
	green-border-unpadded - light green border without padding
	green-mult - green header, 3 repeating row colors
	green-padded - like green but with extra padding
	green-unpadded - like green but without padding
	light - light colors
	light-alt - light colors, alternating row colors
	light-mult - light colors, 3 repeating row colors
	medium - medium colors
	medium-alt - medium colors, alternating row colors
	medium-mult - medium colors, 3 repeating row colors
	mixed - fillers revealed
	plain - slightly colored
	pretty - multicolored
	pretty-alt - multicolored, alternating row colors
	pretty-mult - multicolored, 3 repeating row colors
	test - no colors
	yellow - light yellow background
	yellow-border - light yellow border

NOAA.Observations.Help

Prints info on the escript command's usage and syntax.

 Summary

 Functions

 show_help()

 Prints info on the escript command's usage and syntax.

 Functions

 Link to this function

 show_help()

 View Source

 @spec show_help() :: :ok

Prints info on the escript command's usage and syntax.

NOAA.Observations.Log

 Summary

 Functions

 error(atom, arg)

 info(atom, arg)

 Functions

 Link to this function

 error(atom, arg)

 View Source

 Link to this function

 info(atom, arg)

 View Source

NOAA.Observations.Message

 Summary

 Functions

 error(reason)

 fetching_error(code, text)

 status(code)

 writing_table(code)

 Functions

 Link to this function

 error(reason)

 View Source

 @spec error(term()) :: String.t()

 Link to this function

 fetching_error(code, text)

 View Source

 @spec fetching_error(NOAA.Observations.State.code(), String.t()) :: :ok

 Link to this function

 status(code)

 View Source

 @spec status(pos_integer()) :: String.t()

 Link to this function

 writing_table(code)

 View Source

 @spec writing_table(NOAA.Observations.State.code()) :: :ok

NOAA.Observations.State

Fetches the stations for a US state/territory code.

 Summary

 Types

 code()

 US state/territory code

 Functions

 stations(code, url_templates)

 Fetches the stations for a US state/territory code.

 Types

 Link to this type

 code()

 View Source

 @type code() :: String.t()

US state/territory code

 Functions

 Link to this function

 stations(code, url_templates)

 View Source

 @spec stations(code(), Keyword.t()) ::
 {:ok, [NOAA.Observations.Station.t()]} | {:error, String.t()}

Fetches the stations for a US state/territory code.
Returns a tuple of either {:ok, [station]} or {:error, text}.

 Parameters

	code - US state/territory code
	url_templates - URL templates

 Examples

iex> alias NOAA.Observations.State
iex> url_templates = [
...> state:
...> "https://w1.weather.gov/xml/current_obs/seek.php?state=" <>
...> "<%=state%>&Find=Find"
...>]
iex> {:ok, stations} = State.stations("vt", url_templates)
iex> %{"KFSO" => name} = Map.new(stations)
iex> name
"Franklin County State Airport"

iex> alias NOAA.Observations.State
iex> url_templates = [
...> state:
...> "http://w1.weather.gov/xml/current_obs/seek.php?state=" <>
...> "<%=state%>&Find=Find"
...>]
iex> {:error, text} = State.stations("vt", url_templates)
iex> text
"status code 301 ⇒ Moved Permanently"

iex> alias NOAA.Observations.State
iex> url_templates = [
...> state:
...> "https://www.weather.gov/xml/current_obs/seek.php?state=" <>
...> "<%=state%>&Find=Find"
...>]
iex> {:error, text} = State.stations("vt", url_templates)
iex> text
"status code 302 ⇒ Found"

iex> alias NOAA.Observations.State
iex> url_templates = [
...> state:
...> "https://w1.weather.gov/xml/past_obs/seek.php?state=" <>
...> "<%=state%>&Find=Find"
...>]
iex> {:error, text} = State.stations("vt", url_templates)
iex> text
"status code 404 ⇒ Not Found"

iex> alias NOAA.Observations.State
iex> url_templates = [
...> state:
...> "htp://w1.weather.gov/xml/current_obs/seek.php?state=" <>
...> "<%=state%>&Find=Find"
...>]
iex> {:error, text} = State.stations("vt", url_templates)
iex> text
"reason => :nxdomain"

iex> alias NOAA.Observations.State
iex> url_templates = [state: "http://localhost:1"]
iex> {:error, text} = State.stations("vt", url_templates)
iex> text
"reason => :econnrefused"

NOAA.Observations.Station

Fetches the latest observation for a given NOAA station.

 Summary

 Types

 id()

 Station ID

 name()

 Station name

 observation()

 NOAA weather observation

 t()

 NOAA station

 Functions

 observation(station, code, url_templates)

 Fetches the latest observation for a given NOAA station.

 Types

 Link to this type

 id()

 View Source

 @type id() :: String.t()

Station ID

 Link to this type

 name()

 View Source

 @type name() :: String.t()

Station name

 Link to this type

 observation()

 View Source

 @type observation() :: map()

NOAA weather observation

 Link to this type

 t()

 View Source

 @type t() :: {id(), name()}

NOAA station

 Functions

 Link to this function

 observation(station, code, url_templates)

 View Source

 @spec observation(t(), NOAA.Observations.State.code(), Keyword.t()) ::
 {:ok, observation()} | {:error, String.t()}

Fetches the latest observation for a given NOAA station.
Returns either tuple {:ok, observation} or tuple {:error, text}.

 Parameters

	{id, name} - NOAA station
	url_templates - URL templates

 Examples

iex> alias NOAA.Observations.Station
iex> url_templates = [
...> station:
...> "https://w1.weather.gov/xml/current_obs/display.php?stid=" <>
...> "<%=station%>"
...>]
iex> {:ok, observation} =
...> Station.observation({"KFSO", "KFSO name"}, "vt", url_templates)
iex> is_map(observation) and
...> is_binary(observation["temp_c"]) and
...> is_binary(observation["wind_mph"])
true

iex> alias NOAA.Observations.Station
iex> url_templates = [
...> station:
...> "htp://w1.weather.gov/xml/current_obs/display.php?stid=" <>
...> "<%=station%>"
...>]
iex> {:error, text} =
...> Station.observation({"KFSO", "KFSO name"}, "vt", url_templates)
iex> text
"reason => :nxdomain"

iex> alias NOAA.Observations.Station
iex> url_templates = [
...> station:
...> "https://w1.weather.gov/xml/past_obs/display.php?stid=" <>
...> "<%=station%>"
...>]
iex> {:error, text} =
...> Station.observation({"KFSO", "KFSO name"}, "vt", url_templates)
iex> text
"status code 404 ⇒ Not Found"

NOAA.Observations.URLTemplates

Returns a URL based on URL templates and a station ID or state code.

 Summary

 Functions

 url(url_templates, options)

 Returns a URL based on url_templates and a station id or state code.

 Functions

 Link to this function

 url(url_templates, options)

 View Source

 @spec url(Keyword.t(), Keyword.t()) :: String.t()

Returns a URL based on url_templates and a station id or state code.

 Parameters

	url_templates - keyword of EEx strings
	options - [station: id] or [state: code]

 Examples

iex> alias NOAA.Observations.URLTemplates
iex> url_templates = [
...> state: "w1.weather.gov/seek.php?state=<%=state%>&Find=Find",
...> station: "w1.weather.gov/display.php?stid=<%=station%>"
...>]
iex> {URLTemplates.url(url_templates, state: "vt"),
...> URLTemplates.url(url_templates, station: "KBTV")}
{"w1.weather.gov/seek.php?state=vt&Find=Find",
 "w1.weather.gov/display.php?stid=KBTV"}

iex> alias NOAA.Observations.URLTemplates
iex> url_templates = [
...> state: "weather.gc.ca/forecast/canada/index_e.html?id=<%=state%>"
...>]
iex> URLTemplates.url(url_templates, state: "qc")
"weather.gc.ca/forecast/canada/index_e.html?id=qc"

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

